The generator matrix

 1  0  0  1  1  1  X  1 X^2+X  1  1  1 X^2 X^2+X X^2+X  0  1  1 X^2  1  1 X^2  1  1  X  X  1  1  1  0  1 X^2+X  1  1  1  1  1  1  1 X^2  1  1  1 X^2+X  1 X^2+X  1  0  0 X^2+X  0 X^2 X^2+X  X  1  1  1  1  1  1  X  1  1  1  1  X X^2 X^2+X  0  X  1  X  1  1
 0  1  0  1 X^2 X^2+1  1  1 X^2+X X^2+1  0 X^2  1  1  0  X  X X+1  1 X^2+X X^2+X+1  1  X X+1  1  1  1  X  0  1 X+1  1 X^2+X X^2+X+1  X  1 X^2 X^2+X X+1  0 X+1 X^2+1 X+1 X^2 X^2+X  1  1  1  1  1  1 X^2+X  1  1 X^2+1 X^2+X+1 X+1 X^2+1 X^2 X^2+X+1 X^2+X X^2+X+1 X^2+X+1  1  0  1  1  1  1 X^2  1  1 X+1  0
 0  0  1 X^2  1 X^2+1 X^2+1 X^2+X  1 X+1  X X^2+X+1  X X+1  1  1  0 X^2+X X+1  X X^2  1  1 X+1  0  X X^2+1 X+1 X^2+X+1 X^2+X  1 X^2 X+1  1 X^2+1  0 X^2+1 X^2+X X^2  1  X X^2+X X^2+X+1  1 X^2  X X^2+X+1 X^2  1 X^2+X+1 X+1  1 X^2+1  1  X  X  0  0  X X+1  1 X^2+X  0  X X^2 X^2+X+1 X^2+X+1 X^2+X X^2+1  X  1 X^2 X^2+X X+1

generates a code of length 74 over Z2[X]/(X^3) who�s minimum homogenous weight is 71.

Homogenous weight enumerator: w(x)=1x^0+36x^71+165x^72+40x^73+132x^74+16x^75+32x^76+24x^77+22x^78+12x^79+20x^80+4x^82+4x^84+2x^86+1x^88+1x^96

The gray image is a linear code over GF(2) with n=296, k=9 and d=142.
This code was found by Heurico 1.11 in 0.11 seconds.